Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 76

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc. (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-062, 121 Pages, 2023/03

JAEA-Review-2022-062.pdf:4.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc." conducted in FY2021. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method. When widely constructed, fuel debris and deposits discharged out of the pedestal are coated with water stop and repair materials and become waste ...

JAEA Reports

Novel mechanical manipulator for efficient fuel debris retrieval (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-040, 70 Pages, 2023/01

JAEA-Review-2022-040.pdf:3.17MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Novel mechanical manipulator for efficient fuel debris retrieval" conducted in FY2021. The present study aims to the development of a collision-tolerant robotic manipulator with the mechanical variable impedance actuators in an unknown environment. Another research target is the system architecture of an artificial intelligence-based control method for efficient exploration and decommissioning. In addition to conducting an investigation in the area deep inside the aperture, which has been difficult with conventional investigations, we aim to recover pebble-shaped fuel debris at the bottom of the pedestal using a gripper at the tip of the manipulator.

Journal Articles

Effect of oxygen concentration on corrosion rate of carbon steel in air/solution alternating condition

Otani, Kyohei; Ueno, Fumiyoshi; Kato, Chiaki

Zairyo To Kankyo, 71(2), p.40 - 45, 2022/02

The purpose of this study is to investigate the effect of oxygen concentration in the air on the corrosion rate of carbon steel in an air/solution alternating environment in the low oxygen concentration range and to clarify the corrosion rate and corrosion mechanism of carbon steel depending on the oxygen concentration in air by the mass change of specimens before and after the corrosion test and observing the iron rust layer formed on the surface of carbon steel. The corrosion rate increases with increasing oxygen concentration in the air, and the gradient of the corrosion rate decreases gradually. The maximum erosion depth increased with increasing oxygen concentration except for the case of 1% oxygen concentration, however, the maximum erosion depth for 1% oxygen concentration was larger than that for 5% air oxygen concentration.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2020-058, 101 Pages, 2021/02

JAEA-Review-2020-058.pdf:5.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

Journal Articles

Study of catalytic reaction at electrode-electrolyte interfaces by a CV-XAFS method

Kusano, Shogo*; Matsumura, Daiju; Asazawa, Koichiro*; Kishi, Hirofumi*; Sakamoto, Tomokazu*; Yamaguchi, Susumu*; Tanaka, Hirohisa*; Mizuki, Junichiro*

Journal of Electronic Materials, 46(6), p.3634 - 3638, 2017/06

 Times Cited Count:3 Percentile:19.71(Engineering, Electrical & Electronic)

JAEA Reports

Verification of alternative dew point hygrometer for CV-LRT in MONJU; Short- and long-term verification for capacitance-type dew point hygrometer (Translated document)

Ichikawa, Shoichi; Chiba, Yusuke; Ono, Fumiyasu; Hatori, Masakazu; Kobayashi, Takanori; Uekura, Ryoichi; Hashiri, Nobuo*; Inuzuka, Taisuke*; Kitano, Hiroshi*; Abe, Hisashi*

JAEA-Research 2017-001, 40 Pages, 2017/03

JAEA-Research-2017-001.pdf:5.19MB

In order to reduce the influence on a plant schedule of the MONJU by the maintenance of dew point hygrometers, The JAEA examined a capacitance type dew point hygrometer as an alternative dew point hygrometer for a lithium-chloride type dew point hygrometer which had been used at the CV-LRT in the MONJU. As a result of comparing a capacitance type dew point hygrometer with a lithium-chloride type dew point hygrometer at the CV-LRT (Atmosphere: nitrogen, Testing time: 24 hours), there weren't significant difference between a capacitance type dew point hygrometer and a lithium-chloride type dew point hygrometer. As a result of comparing a capacitance dew point hygrometer with a high-mirror-surface type dew point hygrometer for long term verification (Atmosphere: air, Testing time: 24 months), the JAEA confirmed that a capacitance type dew point hygrometer satisfied the instrument specification ($$pm$$2.04$$^{circ}$$C) required by the JEAC4203-2008.

JAEA Reports

Verification of alternative dew point hygrometer for CV-LRT in Monju

Ichikawa, Shoichi; Chiba, Yusuke; Ono, Fumiyasu; Hatori, Masakazu; Kobayashi, Takanori; Uekura, Ryoichi; Hashiri, Nobuo*; Inuzuka, Taisuke*; Kitano, Hiroshi*; Abe, Hisashi*

JAEA-Research 2016-021, 32 Pages, 2017/02

JAEA-Research-2016-021.pdf:5.0MB

In order to reduce the influence on a plant schedule of the MONJU by the maintenance of dew point hygrometers, The JAEA examined a capacitance type dew point hygrometer as an alternative dew point hygrometer for a lithium-chloride type dew point hygrometer which had been used at the CV-LRT in the MONJU. As a result of comparing a capacitance type dew point hygrometer with a lithium-chloride type dew point hygrometer at the CV-LRT (Atmosphere: nitrogen, Testing time: 24 hours), there weren't significant difference between a capacitance type dew point hygrometer and a lithium-chloride type dew point hygrometer. As a result of comparing a capacitance dew point hygrometer with a high-mirror-surface type dew point hygrometer for long term verification (Atmosphere: air, Testing time: 24 months), the JAEA confirmed that a capacitance type dew point hygrometer satisfied the instrument specification ($$pm$$2.04$$^{circ}$$C) required by the JEAC4203-2008.

Journal Articles

Tensile and fatigue strength of free-standing CVD diamond

Davies, A. R.*; Field, J. E.*; Takahashi, Koji; Hada, Kazuhiko

Diamond and Related Materials, 14(1), p.6 - 10, 2005/01

 Times Cited Count:21 Percentile:61.84(Materials Science, Multidisciplinary)

A CVD diamond is finding increased application and it is important to study its fatigue properties. The present paper describes research on a batch of di-electric grade CVD material. It was obtained that tensile strength at the nucleation side and the growth were side 690$$pm$$90MPa and 280$$pm$$30MPa, respectively. Some samples survived at least 95% of their critical fracture stress for 10$$^{7}$$ cycles without fatiguing.

Journal Articles

Energetic deuterium and helium irradiation effects on chemical structure of CVD diamond

Sasaki, Masayoshi*; Morimoto, Yasutomi*; Kimura, Hiromi*; Takahashi, Koji; Sakamoto, Keishi; Imai, Tsuyoshi; Okuno, Kenji*

Journal of Nuclear Materials, 329-333(Part1), p.899 - 903, 2004/08

A CVD diamond has been the reference material of a torus widow for a rf heating system in a fusion reactor. Since the window is in the circumstance of tritium, helium and radio activated dust, it is important to elucidate the effect of ions on chemical structure of the diamond, existing states of tritium and tritium inventory. Polycrystalline CVD diamond disks($$phi$$=10.0mm, t=0.21mm) used in this study are the same grade as rf windows. After sputtering the surface with 1.0 keV Ar$$^{+}$$ to remove oxygen impurity, the sample was irradiated with deuterium (D$$_{2}$$$$^{+}$$) or helium ions (He$$^{+}$$) at an angle of 0 degrees to the surface normal. The irradiation energies of deuterium and helium are 0.25 keV D$$^{+}$$ and 0.45 keV He$$^{+}$$, respectively. The structural change of the irradiated sample was measured by X-ray Photoelectron Spectroscopy (XPS) technique. The C1s peak shift toward lower binding energy side was observed when deuterium ions irradiated. This result indicates that the diamond changes to amorphous carbon due to formation of C-D bond.

Journal Articles

Thermal diffusivity/conductivity of Tyranno SA fiber- and Hi-Nicalon type S fiber-reinforced 3-D SiC/SiC composites

Yamada, Reiji; Igawa, Naoki; Taguchi, Tomitsugu

Journal of Nuclear Materials, 329-333(Part1), p.497 - 501, 2004/08

 Times Cited Count:29 Percentile:85.21(Materials Science, Multidisciplinary)

SiC fiber reinforced SiC composites (SiC/SiC) have a potential for a structural material for a blanket wall of advanced fusion reactors. To reduce thermal stresses in the wall under heavy thermal loads SiC/SiC composites are expected to have high thermal conductivity as possible. Advanced SiC fibers recently developed, such as Tyranno SA and Hi-Nicalon Type S have been employed for weaving 3D textures as well as those 2D unwoven fabrics. The CVI and PIP/CVI fabrication methods were used. The thermal conductivity at RT was 40-50 W/mK and 35-40 W/mK for Tyranno CVI and PIP/CVI composites, respectively, whereas about 25 and about 17 W/mK at 1000 $$^{circ}$$C. 2D unwoven CVI composites had less than 12 W/mK for RT-1000 $$^{circ}$$C. For Hi-Nicalon Type S, 3D CVI composites had about 35 and about 20 for RT and 1000 $$^{circ}$$C, respectively. The reason of these high thermal conductivities was ascribed to higher density as well as better SiC crystallinity. The fiber configuration effects on the thermal conductivity of SiC/SiC composites were dominant in the low temperature region.

Journal Articles

Energetic deuterium and helium irradiation effects on chemical structure of CVD diamond

Sasaki, Masayoshi*; Morimoto, Yasutomi*; Kimura, Hiromi*; Takahashi, Koji; Sakamoto, Keishi; Imai, Tsuyoshi; Okuno, Kenji*

Journal of Nuclear Materials, 329-333(1), p.899 - 903, 2004/08

 Times Cited Count:4 Percentile:29.18(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

The Toughness of free-standing CVD diamond

Davies, A. R.*; Field, J. E.*; Takahashi, Koji; Hada, Kazuhiko

Journal of Materials Science, 39(5), p.1571 - 1574, 2004/03

 Times Cited Count:8 Percentile:33.77(Materials Science, Multidisciplinary)

A four-point bend test was used to determine the fracture toughness of mechanical grade and di-electric (optical) grade chemical vapour deposited (CVD) diamond. The validity of the test was first confirmed by measuring the toughness of alumina and confirming the results with literature values. The toughnesses of both types of CVD were similar; 8.5$$pm$$1.0 and 8.3$$pm$$0.4 MPa ($$sqrt{m}$$) respectively. This is higher than the value of 3.4$$pm$$0.5 MPa ($$sqrt{m}$$) measured for diamond by Field and Freeman, 1981 using an indentation technique. It is suggested that this is primarily due to differences in surface roughness. There were enough samples to make a preliminary study of the effect of temperature and these data are reported.

Journal Articles

Electrical characteristics of interface defects in oxides grown at 1200 $$^{circ}$$C in dry oxygen ambient on silicon carbide and their thermal annealing effects

Yoshikawa, Masahito; Ishida, Yuki*; Jikimoto, Tamotsu*; Hijikata, Yasuto*; Ito, Hisayoshi; Okumura, Hajime*; Takahashi, Tetsuo*; Tsuchida, Hidekazu*; Yoshida, Sadafumi*

Denshi Joho Tsushin Gakkai Rombunshi, C, 86(4), p.426 - 433, 2003/04

no abstracts in English

Journal Articles

Highly thermal conductive sintered SiC fiber-reinforced 3D SiC/SiC composites; Experiments and finite-element analysis of the thermal diffusivity/conductivity

Yamada, Reiji; Igawa, Naoki; Taguchi, Tomitsugu; Jitsukawa, Shiro

Journal of Nuclear Materials, 307-311(Part2), p.1215 - 1220, 2002/12

 Times Cited Count:24 Percentile:80.59(Materials Science, Multidisciplinary)

SiC fiber-reinforced SiC composites (SiC/SiC) are considered an advanced structural material for blanket modules of a fusion reactor, which requires high thermal conductivity in order to keep thermal stresses in the material lower than the allowable design stress. The sintered SiC fiber recently developed has obtained high thermal conductivity, so it is highly expected that sintered SiC fiber-reinforced SiC/SiC composites would also show high thermal conductivity. In this study several types of 3D SiC/SiC composites were fabricated by either CVI or PIP method. The results of the thermal conductivity measurements show that the maximum thermal conductivity at room temperature was about 60 W/mK for CVI composites or 25W/mK for PIP ones. These values are considerably higher than those of non-sintered SiC fiber reinforced SiC/SiC composites, which indicates a possibility that the developed materials would be promising. The FEM thremal analysis shows the good agreement between the caluculated and experimental results.

Journal Articles

Disruption tests on repaired tungsten by CVD coating

Taniguchi, Masaki; Sato, Kazuyoshi; Ezato, Koichiro; Yokoyama, Kenji; Akiba, Masato

Journal of Nuclear Materials, 307-311(Part1), p.719 - 722, 2002/12

 Times Cited Count:18 Percentile:73.17(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system

Igawa, Naoki; Taguchi, Tomitsugu; Snead, L. L.*; Kato, Yudai*; Jitsukawa, Shiro; Koyama, Akira*; McLaughlin, J. C.*

Journal of Nuclear Materials, 307-311(Part2), p.1205 - 1209, 2002/12

 Times Cited Count:16 Percentile:69.75(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Plan to development of ZrC-TRISO coated fuel particle and construction of ZrC coater

Ueta, Shohei; Tobita, Tsutomu*; Ino, Hiroichi*; Takahashi, Masashi*; Sawa, Kazuhiro

JAERI-Tech 2002-085, 41 Pages, 2002/11

JAERI-Tech-2002-085.pdf:2.66MB

no abstracts in English

Journal Articles

Spin test of high strength 3D-C/C composite disk model for HTGR-GT system, 2

Ishiyama, Shintaro; Muto, Yasushi

Nihon Kinzoku Gakkai-Shi, 66(6), p.662 - 669, 2002/06

no abstracts in English

76 (Records 1-20 displayed on this page)